>

Wednesday, February 19, 2020

Similarities between human and plants (Part-03: Smell similarity)

Functional similarities between human and plant (P.C.: Research Gate)

Human and plant consciousness share a remarkable number of similarities, particularly in relation to the five senses which both use to navigate the complexities of the world. There has been an ever-increasing body of research developing over the years demonstrating that consciousness is indeed not limited only to animals and humans, but plants as well and more so even objects we consider inanimate like rocks and metals. After all, there is no difference in composition between any of these things at the subatomic level. Everything we can perceive and even that which we cannot are made of electrons and protons circling around a nucleus. At the sub-atomic level there is little difference between the human brain and dirt (not to diminish the incredible complexity of the brain…). 

Smell Similarity


The parasitic vine called dodder is the sniffer dog of the vegetable world. It contains almost no chlorophyll – the pigment that most plants use to make food – so to eat it must suck the sugary sap from other plants. Dodder uses olfaction to hunt down its quarry. It can distinguish potential victims from their smell, homing in on its favorites and also using scents emitted by unhealthy specimens to avoid them (Science, vol 313, p 1964).

Dodder is exceptionally sensitive to odors, but all plants have a sense of smell. In animals, sensors in the nose recognize and bind with molecules in the air. Plants also have receptors that respond to volatile chemicals. What do they smell?

Back in the 1920s, researchers with the US Department of Agriculture demonstrated that treating unripe fruit with ethylene gas would induce it to ripen. Since then, it has become apparent that all ripening fruits emit ethylene in copious amounts, can smell it, and respond by ripening. This ensures not only that a fruit ripens uniformly but also that neighboring ones ripen together, producing more ethylene and leading to a ripening cascade. Coordinated ripening is important because it attracts animals to eat the fruit and disperse the seeds. Ethylene is a plant hormone that regulates many processes, so being able to smell it has other advantages too, such as in the coordination of leaf-color changes in the autumn.

Above all, however, smell allows plants to communicate. Research in the 1980s showed that healthy trees in the vicinity of caterpillar-infested ones were resistant to the pests because their leaves contained chemicals that made them unpalatable. Other trees isolated from the infestation did not produce these chemicals, so it seemed that the attacked trees had sent an airborne pheromonal message that primed healthy trees to prepare for imminent attack. We now know that many volatile chemicals are involved.


Acknowledgment: Helix, Quora, Zazenlife.com

No comments:

Post a Comment

Thanks for commenting

A Novel Aspect of Farmland Birds Conservation in Precision Agriculture

Farmland bird nest (Source: Wallhere.com ) Written By:  Muhammad Abdul Mannan If we we even keep us very slightly updated with the advanceme...